Printed Page:- 04		Subject Code:- ACSE0304 / ACSEH0304 Roll. No:	
NO	(An Autonomous Institute A B. ' SEM: III - THEORY EX	AND TECHNOLOGY, GREATER NOIDA Affiliated to AKTU, Lucknow) Tech AMINATION - (2023 - 2024) ogic & Circuit Design	
Tim	e: 3 Hours	Max. Marks: 100	
	ral Instructions:		
IMP:	Verify that you have received the question	paper with the correct course, code, branch etc.	
		ons -A, B, & C. It consists of Multiple Choice	
	ions (MCQ's) & Subjective type questions		
	ximum marks for each question are indica strate your answers with neat sketches wh	•	
	ume suitable data if necessary.	erever necessary.	
	ferably, write the answers in sequential or	·der.	
	sheet should be left blank. Any written ma		
evalua	ated/checked.		
SECT	CION-A	20	
1. Atte	empt all parts:-		
1-a.	1's complement of Binary number 10	1010 is (CO1)	
	(a) 10101		
	(b) 11011		
	(c) 1000		
	(d) 101011		
1-b.	is called Universa	al Gate.(CO1)	
	(a) XOR Gate		
	(b) XNOR Gate		
	(c) NAND Gate		
	(d) AND Gate		
1 a	` '	d (CO2)	
1-c.	A half adder circuit has two inputs and	1 (CO2)	
	(a) one output		
	(b) two output		
	(c) three output		
	(d) none of these		
1-d.	If there are n selection lines, then the 1 (CO2)	number of maximum possible input lines is 1	
	(a) 2^n		
	(b) n		

	(c)	2n		
	(d)	n/2		
1-e.	The basic latch consists of(CO3)			
	(a)	Two inverters		
	(b)	Two comparators		
	(c)	Two amplifiers		
	(d)	Two adders		
1-f.	Number of flip-flops required in MOD 5 counter. (CO3)			
	(a)	2		
	(b)	3		
	(c)	4		
	(d)	5		
1-g.	How many flip-flops are required to construct a decade counter? (CO4)			
	(a)	4		
	(b)	8		
	(c)	5		
	(d)	10		
1-h.	In which model, the next state is a function of the present state and the present inputs. Its output is also a function of the present state and the present inputs. (CO4)			
	(a)	Mealy Circuit model		
	(b)	Moore Circuit Model		
	(c)	Both of these		
	(d)	None of these		
1-i.	The full form of ROM is (CO5)			
	(a)	Read Outside Memory		
	(b)	Read Out Memory		
	(c)	Read Only Memory		
	(d)	Read One Memory		
1-j.	PLDs with programmable AND and fixed OR arrays are called (CO5)			
	(a)	PAL		
	(b)	PLA		
	(c)	APL		
	(d)	PPL		
2. Att	empt a	all parts:-		
2.a.	L	ist out the truth table entry for two input NAND Gate.(CO1)	2	
2.b.	D	efine Multiplexer. (CO2)	2	

2.c.	Differentiate between edge triggering and level triggering. (CO3)	2
2.d.	Define propagation delay time. (CO4)	2
2.e.	Differentiate between ROM and RAM. (CO5)	2
SECTI	ON-B	30
3. Ansv	wer any <u>five</u> of the following:-	
3-a.	Construct the Hamming code for the 4 bit data 1010. Consider the even parity. (CO1)	6
3-b.	Implement the Boolean expression $F(A,B,C) = ABC' + A'B' + AC'$ using both universal logic gates. (CO1)	6
3-c.	Implement the SUM and CARRY Boolean functions of full adder using multiplexers. (CO2)	6
3-d.	What is the logic implementation of half adder? Implement full adder using half adders. (CO2)	6
3.e.	What is a master-slave flip-flop? Explain its working with suitable diagram. (CO3)	6
3.f.	Difference between synchronous and asynchronous sequential circuits. (CO4)	6
3.g.	Differentiate and compare FPGA and CPLD. (CO5)	6
SECTI	ON-C	50
4. Ansv	wer any one of the following:-	
4-a.	Minimize the given four variable logic function using Quine Mc-Clusky Method:- (CO1) $F(A, B, C, D) = \sum_{i=0}^{\infty} (0.1, 2.3.5, 7.8, 9.11, 14)$	10
4-b.	Simplify the logic expression using K map:- (CO1)	10
	$F(A, B, C, D, E) = \Sigma m(0, 5, 6, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27, 29, 31)$	
5. Ansv	wer any <u>one</u> of the following:-	
5-a.	Design a combinational circuit that will compare two 4-bit numbers. (CO2)	10
5-b.	Design a combinational circuit that accepts a three-bit number and generates an output binary number equal to the square of the input number. (CO2)	10
6. Ansv	wer any <u>one</u> of the following:-	
6-a.	What is a flip-flop? Convert SR flip flop to D flip flop. (CO3)	10
6-b.	Explain universal shift register in detail. (CO3)	10
7. Ansv	wer any <u>one</u> of the following:-	
7-a.	Explain Hazards in sequential circuits. (CO4)	10
7-b.	Draw the reduced state table and reduce state diagram for the state diagram shown in fig. (CO4)	10

Page 3 of 4

- 8. Answer any one of the following:-
- 8-a. Implement the following functions using PLA (CO5)

10

- i) $A(x,y,z) = \sum m(1,2,4,6)$
- ii) $B(x,y,z) = \sum m(0,1,6,7)$
- iii) $C(x,y,z)=\sum m(2,6)$

8-b. Compare various programmable devices. (CO5)

10